1/2

FACTSHEET

Steam Efficiency: Economic and Business Case Development

Economic and Business Case Development

Every time an investment decision has to be taken, one form or another of comparing costs against benefits is involved. The objective of a costs-benefits analysis is to provide the information needed to make a decision. The most complete analysis of an investment in an energy efficiency project or technology requires the analysis of each year of the life of the investment, considering direct costs, indirect and overhead costs, taxes, etc...

In some cases, it is possible to use a short way that reduce the amount of detail needed and permit use of averages rather than detailed year-by-year calculations. Very gross analytical approaches may be suitable for instances in which the results are clear or the validity of detailed studies is questionable. For example, periodically cleaning the heat transfer surfaces in a boiler burning solid fuels doesn't need a cost-benefit appraisal because energy and economic benefits are higher than costs to be incurred in for implementing the measure.

In any case, investment appraisal techniques will be: appropriate for any type of investment; valid in any political background; providing sensitive indicators to make capital investment decision; more reliable as reliable are the input data.

Investment

Increase the return of the money Maximize the profit Proper use of resources

Savings

Avoid non cost-effective projects implementation

Other benefits

Comparison of different alternatives Check the consistency of decisionmaking

The Techniques

Monitoring and Targeting

Get the best from existing technology by the use of the best management techniques.

Investigate which **technologies** are available and applicable to get TOTAL cost reduction (Never miss an opportunity to consider energy efficiency to any project).

All the identified proposals **must**

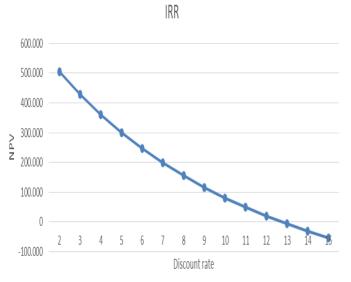
undergo a technical and financial evaluation.

Techniques for Financial Appraisal

- Appropriate for any type of investment.
- Valid in any political background.
- Providing sensitive indicators to make capital investment decision.
- More reliable as reliable are the input data

Several indicators for evaluate economic

- NPV Net Present Value
- WACC Weighted Average Cost Capital
- IRR Internal Rate of Return Payback
- Discount Payback Period
- Sensitive Analysis



FACTSHEET Steam Efficiency: Economic and Business Case Development

Example: Replacement of conventional burners, with a residual lifetime of 7 years, by high efficiency Low NOx burners.

Current Situation			
		Units	
Number of burner	4	n	
Total power	19,7	MW	
Boiler efficiency	91	%	
Fuel	Natural gas		
Fuel cost	0,4	€/Sm ³	
Yearly consumption	5.500.000	Sm³/y	
Yearly energy costs	2.200.000	€/y	
Discount rate (r)	5	%	
Initial lifetime (N)	20	У	
Annuity Factor: (AF(N,r)e = (1 - (1 + r)-N) / r)	12,46	У	
Residual lifetime (R)	7	У	
Annuity Factor: (AF(R,r)R = (1 - (1 + r)-R) / r)	5,79	У	
Initial investment (le)	300.000	€	

Ρ	r	n	n	0	с	Э
	1	υ	μ	U	Э	a

		Unit	s
Boiler efficiency	93	%	
Fuel		Natural	gas
Fuel cost	0,4	€/Sm	1 ³
Yearly consumption	5.381.720	Sm ³ /	'y
Yearly energy costs	2.152.688	€/y	
Discount rate (r)	5	%	
Investment lifetime (n)	20	У	
Annuity Factor: (AF(n,r)new = (1 - (1 + r)-n) / r)	12,46	у	
Investment (I)	450.000	€	
Annual Cash Flow (CF)	1	7.312	£
		1.512	C
Net Present Value (NPV= CF* AF _{new} - (Inew - Ie + Ie*A	F _R /AFe)) 3	00.316	€
IRR		12,5	%
DPBT		7,3	у

— investment lifetime year —— Net Present Value (NPV= CF* AFnew - (Inew - Ie + Ie*AFR/AFe))€

Co-funded by the Horizon 2020 Programme of the European Union The sole responsibility for the content of this publication lies with the STEAM UP project consortium. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.